Dynamic microfluidic control of supramolecular peptide self-assembly

نویسندگان

  • Zohar A. Arnon
  • Andreas Vitalis
  • Aviad Levin
  • Thomas C. T. Michaels
  • Amedeo Caflisch
  • Tuomas P. J. Knowles
  • Lihi Adler-Abramovich
  • Ehud Gazit
چکیده

The dynamic nature of supramolecular polymers has a key role in their organization. Yet, the manipulation of their dimensions and polarity remains a challenge. Here, the minimalistic diphenylalanine building block was applied to demonstrate control of nano-assemblies growth and shrinkage using microfluidics. To fine-tune differential local environments, peptide nanotubes were confined by micron-scale pillars and subjected to monomer flows of various saturation levels to control assembly and disassembly. The small-volume device allows the rapid adjustment of conditions within the system. A simplified kinetic model was applied to calculate parameters of the growth mechanism. Direct real-time microscopy analysis revealed that different peptide derivatives show unidirectional or bidirectional axial dimension variation. Atomistic simulations show that unidirectional growth is dictated by the differences in the axial ends, as observed in the crystalline order of symmetry. This work lays foundations for the rational control of nano-materials dimensions for applications in biomedicine and material science.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein−Nanoparticle Hydrogels That Self-assemble in Response to Peptide-Based Molecular Recognition

Recently, supramolecular hydrogels assembled through nonspecific interactions between polymers and nanoparticles (termed PNP systems) were reported to have rapid shear-thinning and self-healing properties amenable for cell-delivery applications in regenerative medicine. Here, we introduce protein engineering concepts into the design of a new family of PNP hydrogels to enable direct control over...

متن کامل

Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion

Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolec...

متن کامل

Tailoring Supramolecular Peptide-Poly(ethylene glycol) Hydrogels by Coiled Coil Self-Assembly and Self-Sorting.

Physical hydrogels are extensively used in a wide range of biomedical applications. However, different applications require hydrogels with different mechanical and structural properties. Tailoring these properties demands exquisite control over the supramolecular interactions involved. Here we show that it is possible to control the mechanical properties of hydrogels using de novo designed coil...

متن کامل

Self-organization of Short Peptide Fragments: From Amyloid Fibrils to Nanoscale Supramolecular Assemblies

Numerous supramolecular protein assemblies had been demonstrated to have either physiological or pathological activities. The most significant case of diseaseassociated self-organized structures is that of amyloid fibrils. The formation of these fibrils is the hallmark of major human disorders, including Alzheimer’s disease and type II diabetes. In this review we illustrate the molecular proper...

متن کامل

Nonequilibrium Self-Assembly of π-Conjugated Oligopeptides in Solution.

Supramolecular assembly is a powerful method that can be used to generate materials with well-defined structures across multiple length scales. Supramolecular assemblies consisting of biopolymer-synthetic polymer subunits are specifically known to exhibit exceptional structural and functional diversity as well as programmable control of noncovalent interactions through hydrogen bonding in biopo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016